본 포스팅은 여상도 교수님께서 지으신 '열역학 개념의 해설' 중 제21장 '깁스에너지' 내용 요약 및 개인적인 생각을 덧붙여 작성한 것입니다.
21. 깁스에너지
물질의 에너지를 나타내는 물리량에는 내부에너지, 엔탈피, 깁스에너지 등이 있는데요. 모두 물질이 보유하고 있는 에너지를 각각 다른 표현으로 정의하고 있을 뿐, 그 근본적인 의미는 모두 동일하답니다.
엔탈피 정의가 H ≡ U + PV 인 것처럼, 깁스에너지는 G ≡ H -TS 로 정의가 되었는데요. 깁스에너지는 물질의 에너지에 대한 도구를 좀 더 편리하고, 사용하기 쉽도록 연구하는 과정에서 깁스라는 학자에 의해 새롭게 정의가 되었다고 합니다.
그럼 왜 깁스에너지가 사용하기 편리한 에너지 도구인지 살펴볼까요? 그러기 위해서는 약간의 수학적 전개 과정이 필요한데요. 먼저, 열역학 제1법칙(에너지 보존의 법칙)과 엔트로피 정의(dS = dQ/T)를 결합하면 아래 식이 도출된답니다.
- dU = dQ + dW = TdS - PdV (닫힌계 / 역학적 일만 고려) ····· ①
①식과 엔탈피 식을 결합해보면 아래 ②식이 되는 것도 알 수 있어요.
- dH = dU + PdV + VdP = TdS - PdV + PdV + VdP = TdS + VdP ····· ②
마지막으로 깁스에너지 식에 ②식을 결합하면 아래 ③식이 나온답니다.
- dG = dH - TdS - SdT = TdS + VdP - TdS - SdT = VdP - SdT ····· ③
③식을 살펴보면, 압력과 온도의 변화량만 측정하면 깁스에너지의 변화량을 측정할 수 있는 것을 알 수 있는데요. 압력과 온도는 다른 변수(엔트로피, 부피) 보다 측정하기 쉽기 때문에 깁스에너지는 사용하기 편리한 에너지 도구임을 알 수 있답니다.
그럼 이번에는 내부에너지, 엔탈피, 깁스에너지가 어떤 물리적 의미를 가지는지 살펴보겠습니다. 내부에너지는 물질을 구성하는 분자가 미세한 운동을 함으로써 보유하는 에너지를 말하며, 엔탈피는 내부에너지에 물질이 역학적 일을 할 수 있는 에너지를 더한 총괄 에너지의 개념이랍니다. 또한 내부에너지는 부피가 일정할 때 출입되는 열의 양을 뜻하고, 엔탈피는 압력이 일정할 때 출입되는 열의 양을 뜻합니다.
- dU = dQ + dW = dQ -PdV = dQ (부피 일정)
- dH = dQ + VdP = dQ (압력 일정)
이번에는 깁스에너지가 어떤 물리적 의미를 가지는지 살펴보니 위해 약간의 수학적 전개를 하도록 하겠습니다.
- dG = dH - TdS - SdT = dH - TdS (일정 온도, dT=0)
= dU + PdV + VdP -TdS = dU + PdV -TdS (일정 압력, dP=0)
= dQ + dW + PdV -TdS (dU = dQ + dW)
= dQ + dW' - PdV + PdV -TdS (역학적인 일 외에 다른 종류 일(W')도 고려, dW = dW' - PdV)
= dW'+ dQ - TdS - 위 식에서 열역학 제2법칙, dS ≥ dQ/T → dQ - TdS ≤0을 고려하면,
dG ≤ dW' (계에서 일을 하는 경우 dW'는 음수) ····· ④
|dG| ≥ |dW'| ····· ⑤
⑤식을 살펴보면 온도, 압력이 동일한 겨우, 계가 외계에 해준 일 (W', 역학적인 일 외)은 깁스에너지의 변화량보다 같거나 작다는 것을 알 수 있습니다. 또한 가역과정일 경우, 계가 외계에 해준 일(W')은 최대가 되며 그 값은 깁스에너지 변화량과 같다는 것 또한 알 수 있습니다.
이로부터 깁스에너지의 물리적 의미는 온도, 압력이 동일한 경우 역학적인 일을 제외하고 얻을 수 있는 최대 일을 뜻한다는 것을 알 수 있습니다. 즉, 깁스에너지는 다양한 에너지 형태 중에서 실제로 유용한 일로 변환이 가능한 자유로운 에너지를 나타내는 개념이라고 생각할 수 있고, 이런 의미에서 깁스에너지를 깁스자유에너지라고 부르기도 한답니다.
한편, 깁스에너지는 화학반응의 자발성을 판단하는 기준으로 사용이 되는데요.
- dG = dH - TdS (동일 온도, 동일 압력)
물질은 엔탈피가 낮아지는 발열반응(dH<0), 무질서도가 높아지는 반응(dS>0)을 선호하는데, 이는 곧 깁스에너지가 낮아지는 것(dG<0)이기 때문이죠. 이에따라 아래와 같이 반응의 자발성을 판단할 수 있답니다.
- ΔG < 0 → 정반응 우세
- ΔG = 0 → 화학평형
- ΔG > 0 → 역반응 우세
또한, 열역학에서 깁스에너지가 가지는 가장 중요한 사실은 깁스에너지가 상평형을 나타내는 도구로 사용된다는 것인데요. 상변화 시, 온도, 압력은 일정하고, 부피 변화를 하는 역학적일 일밖에 없기 때문에 깁스에너지의 변화량은 0이 된답니다. 이는 상변화 시, 내부에너지, 엔탈피가 급격하게 변하는 것과 대조적인데요. 이로 인해 깁스에너지는 상평형 해석의 출발점이 된답니다. (상평형에 대해서는 추후에 다루도록 하겠습니다.)
그럼 열역학 개념의 해설, 깁스에너지 포스팅을 마치겠습니다.
'1. 화학공학 > 1) 화공 열역학' 카테고리의 다른 글
[열역학 개념의 해설] 퓨개시티 (0) | 2022.02.19 |
---|---|
[열역학 개념의 해설] 물질의 잠재에너지 (0) | 2022.02.17 |
[열역학 개념의 해설] 열역학 제 2법칙 (0) | 2022.02.12 |
[열역학 개념의 해설] 엔트로피 (0) | 2022.02.10 |
[열역학 개념의 해설] 비중임 인자 (0) | 2022.01.24 |
댓글